Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Pathol ; 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38588852

RESUMEN

Hepatocyte nuclear factor 4 alpha (HNF4α) is a nuclear factor essential for liver function that regulates the expression of cMyc and plays an important role in proliferation and differentiation during liver regeneration. This study investigated the role of the HNF4α-cMyc interaction in regulating liver injury and regeneration using the choline-deficient and ethionine-supplemented (CDE) diet model. Wild-type (WT), hepatocyte-specific HNF4α-knockout (KO), cMyc-KO, and HNF4α-cMyc double KO (DKO) mice were fed a CDE diet for 1 week to induce subacute liver injury. To study regeneration, the CDE diet was followed by a normal chow diet for 1 week. WT mice exhibited significant liver injury and decreased HNF4α mRNA and protein expression after 1 week of a CDE diet; HNF4α deletion resulted in significantly higher injury with increased inflammation, fibrosis, proliferation, and hepatic progenitor cell activation compared with WT mice after CDE diet feeding but similar recovery. Deletion of cMyc substantially lowered liver injury with activation of inflammatory genes compared with WT and HNF4α-KO mice after CDE diet feeding. DKO mice resulted in a phenotype comparable to that of the HNF4α-KO mice after CDE diet feeding and led to complete recovery. DKO mice exhibited a significant increase in hepatic progenitor cell markers both after CDE diet-induced injury and after 1 week of recovery. Taken together, these data show that HNF4α protects against inflammatory and fibrotic changes after CDE diet-induced injury, which is driven by cMyc.

2.
Hepatol Commun ; 7(11)2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37930118

RESUMEN

BACKGROUND: O-GlcNAcylation is a post-translational modification catalyzed by the enzyme O-GlcNAc transferase, which transfers a single N-acetylglucosamine sugar from UDP-GlcNAc to the protein on serine and threonine residues on proteins. Another enzyme, O-GlcNAcase (OGA), removes this modification. O-GlcNAcylation plays an important role in pathophysiology. Here, we report that O-GlcNAcylation is essential for hepatocyte differentiation, and chronic loss results in fibrosis and HCC. METHODS: Single-cell RNA-sequencing (RNA-seq) was used to investigate hepatocyte differentiation in hepatocyte-specific O-GlcNAc transferase-knockout (OGT-KO) mice with decreased hepatic O-GlcNAcylation and in O-GlcNAcase-KO mice with increased O-GlcNAcylation in hepatocytes. Patients HCC samples and the diethylnitrosamine-induced HCC model were used to investigate the effect of modulation of O-GlcNAcylation on the development of liver cancer. RESULTS: Loss of hepatic O-GlcNAcylation resulted in disruption of liver zonation. Periportal hepatocytes were the most affected by loss of differentiation, characterized by dysregulation of glycogen storage and glucose production. O-GlcNAc transferase-KO mice exacerbated diethylnitrosamine-induced HCC development with increased inflammation, fibrosis, and YAP signaling. Consistently, O-GlcNAcase -KO mice with increased hepatic O-GlcNAcylation inhibited diethylnitrosamine-induced HCC. A progressive loss of O-GlcNAcylation was observed in patients with HCC. CONCLUSIONS: Our study shows that O-GlcNAcylation is a critical regulator of hepatic differentiation, and loss of O-GlcNAcylation promotes hepatocarcinogenesis. These data highlight increasing O-GlcNAcylation as a potential therapy in chronic liver diseases, including HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Ratones , Animales , Carcinoma Hepatocelular/genética , Dietilnitrosamina , Neoplasias Hepáticas/genética , Diferenciación Celular , Fibrosis
3.
Clin Transl Sci ; 16(12): 2719-2728, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37877453

RESUMEN

Non-alcoholic fatty liver disease (NAFLD), newly renamed metabolic dysfunction-associated liver disease (MASLD), is a leading cause of liver disease in children and adults. There is a paucity of data surrounding potential biomarkers and therapeutic targets, especially in pediatric NAFLD. Leukocyte cell-derived chemotaxin 2 (LECT2) is a chemokine associated with both liver disease and skeletal muscle insulin resistance. Our aim was to determine associations between LECT2 and common clinical findings of NAFLD in pediatric patients. Enzyme-linked immunosorbent assay (ELISA) was used to measure serum LECT2 concentrations in children (aged 2-17 years) with and without NAFLD. LECT2 concentrations were then correlated to clinical parameters in NAFLD. Mean LECT2 was significantly elevated in children with NAFLD versus healthy controls (n = 63 vs. 42, 5.83 ± 1.98 vs. 4.02 ± 2.02 ng/mL, p < 0.005). Additionally, LECT2 had strong correlations with body mass index (BMI) (Pearson r = 0.301, p = 0.002). A LECT2 concentration of 3.76 mg/mL predicts NAFLD with a sensitivity of 90.5% and specificity of 54.8%. Principal component analysis and logistic regression models further confirmed associations between LECT2 and NAFLD status. This study demonstrates increased serum LECT2 concentrations in pediatric NAFLD, which correlates with BMI and shows strong predictive value within these patients. Our data indicate that LECT2 is a potential diagnostic biomarker of disease and should be further investigated in pediatric as well as adult NAFLD.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Adulto , Niño , Humanos , Biomarcadores , Factores Quimiotácticos/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/diagnóstico , Enfermedad del Hígado Graso no Alcohólico/metabolismo
4.
Hepatology ; 78(4): 1106-1117, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37021787

RESUMEN

BACKGROUND AND AIMS: Overdose of acetaminophen (APAP) is the major cause of acute liver failure in the western world. We report a novel signaling interaction between hepatocyte nuclear factor 4 alpha (HNF4α) cMyc and nuclear factor erythroid 2-related factor 2 (Nrf2) during liver injury and regeneration after APAP overdose. APPROACH AND RESULTS: APAP-induced liver injury and regeneration were studied in male C57BL/6J (WT) mice, hepatocyte-specific HNF4α knockout mice (HNF4α-KO), and HNF4α-cMyc double knockout mice (DKO). C57BL/6J mice treated with 300 mg/kg maintained nuclear HNF4α expression and exhibited liver regeneration, resulting in recovery. However, treatment with 600-mg/kg APAP, where liver regeneration was inhibited and recovery was delayed, showed a rapid decline in HNF4α expression. HNF4α-KO mice developed significantly higher liver injury due to delayed glutathione recovery after APAP overdose. HNF4α-KO mice also exhibited significant induction of cMyc, and the deletion of cMyc in HNF4α-KO mice (DKO mice) reduced the APAP-induced liver injury. The DKO mice had significantly faster glutathione replenishment due to rapid induction in Gclc and Gclm genes. Coimmunoprecipitation and ChIP analyses revealed that HNF4α interacts with Nrf2 and affects its DNA binding. Furthermore, DKO mice showed significantly faster initiation of cell proliferation resulting in rapid liver regeneration and recovery. CONCLUSIONS: These data show that HNF4α interacts with Nrf2 and promotes glutathione replenishment aiding in recovery from APAP-induced liver injury, a process inhibited by cMyc. These studies indicate that maintaining the HNF4α function is critical for regeneration and recovery after APAP overdose.


Asunto(s)
Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Enfermedad Hepática Inducida por Sustancias y Drogas , Masculino , Animales , Ratones , Acetaminofén/toxicidad , Regeneración Hepática/genética , Factor 2 Relacionado con NF-E2/metabolismo , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/metabolismo , Ratones Endogámicos C57BL , Hígado/metabolismo , Hepatocitos/metabolismo , Glutatión/metabolismo , Ratones Noqueados , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo
5.
bioRxiv ; 2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36778348

RESUMEN

Background: Per- and polyfluoroalkyl substances (PFAS) are persistent organic pollutants with myriad adverse effects. While perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) are the most common contaminants, levels of replacement PFAS, such as perfluoro-2-methyl-3-oxahexanoic acid (GenX), are increasing. In rodents, PFOA, PFOS, and GenX have several adverse effects on the liver, including nonalcoholic fatty liver disease. Objective: We aimed to determine human-relevant mechanisms of PFAS induced adverse hepatic effects using FRG liver-chimeric humanized mice with livers repopulated with functional human hepatocytes. Methods: Male humanized mice were treated with 0.067 mg/L of PFOA, 0.145 mg/L of PFOS, or 1 mg/L of GenX in drinking water for 28 days. Liver and serum were collected for pathology and clinical chemistry, respectively. RNA-sequencing coupled with pathway analysis was used to determine molecular mechanisms. Results: PFOS caused a significant decrease in total serum cholesterol and LDL/VLDL, whereas GenX caused a significant elevation in LDL/VLDL with no change in total cholesterol and HDL. PFOA had no significant changes in serum LDL/VLDL and total cholesterol. All three PFAS induced significant hepatocyte proliferation. RNA-sequencing with alignment to the human genome showed a total of 240, 162, and 619 differentially expressed genes after PFOA, PFOS, and GenX exposure, respectively. Upstream regulator analysis revealed inhibition of NR1D1, a transcriptional repressor important in circadian rhythm, as the major common molecular change in all PFAS treatments. PFAS treated mice had significant nuclear localization of NR1D1. In silico modeling showed PFOA, PFOS, and GenX potentially interact with the DNA-binding domain of NR1D1. Discussion: These data implicate PFAS in circadian rhythm disruption via inhibition of NR1D1. These studies show that FRG humanized mice are a useful tool for studying the adverse outcome pathways of environmental pollutants on human hepatocytes in situ.

6.
bioRxiv ; 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36824917

RESUMEN

Background & Aims: O-GlcNAcylation is a post-translational modification catalyzed by the enzyme O-GlcNAc transferase (OGT), which transfers a single N-acetylglucosamine sugar from UDP-GlcNAc to the protein on serine and threonine residues on proteins. Another enzyme, O-GlcNAcase (OGA), removes this modification. O-GlcNAcylation plays an important role in pathophysiology. Here, we report that O-GlcNAcylation is essential for hepatocyte differentiation, and chronic loss results in fibrosis and hepatocellular carcinoma. Methods: Single-cell RNA-sequencing was used to investigate hepatocyte differentiation in hepatocyte-specific OGT-KO mice with increased hepatic O-GlcNAcylation and in OGA-KO mice with decreased O-GlcNAcylation in hepatocytes. HCC patient samples and the DEN-induced hepatocellular carcinoma (HCC) model were used to investigate the effect of modulation of O-GlcNAcylation on the development of liver cancer. Results: Loss of hepatic O-GlcNAcylation resulted in disruption of liver zonation. Periportal hepatocytes were the most affected by loss of differentiation characterized by dysregulation of glycogen storage and glucose production. OGT-KO mice exacerbated DEN-induced HCC development with increased inflammation, fibrosis, and YAP signaling. Consistently, OGA-KO mice with increased hepatic O-GlcNAcylation inhibited DEN-induced HCC. A progressive loss of O-GlcNAcylation was observed in HCC patients. Conclusions: Our study shows that O-GlcNAcylation is a critical regulator of hepatic differentiation, and loss of O-GlcNAcylation promotes hepatocarcinogenesis. These data highlight increasing O-GlcNAcylation as a potential therapy in chronic liver diseases, including HCC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...